Maintenance Planning, Process Engineering , Instrumentation Training Courses

Economic & Technical Evaluations in Engineering & Maintenance

Duration
2025-11-23 5 Days 2025-11-27
Attendance

Hotel Meeting Room

Hotel Meeting Room
Course code
MA-362
Copied !
City / venue
Casablanca

Classroom

Fees / hours
3450 $ | 25 Hours

Course registration form

Candidate Data

Candidate full name *
Email *
Private phone number *

Work phone number

Optional

Country & City *
Company / Employer *

Invoice Recipient Data

Recipient name *
Recipient phone number *
work phone number *

Recipient email

Optional

Recipient work address details

Optional



Sending course brochure to my e-mail

Please leave us your contacts, and we will call you back as soon as possible

Full name *
Email *

Private phone number

Optional



Call me back

Please leave us your contacts, and we will call you back as soon as possible

Full name *
Private phone number *
Company / Employer *


Course Inquiry

Please provide us with your contacts with your inquiry, and we will answer it as soon as possible

Full name *
Email *
Private phone number *
work phone number *
Country & City *
Company / Employer *

Your Inquiry



In-house proposal

Please provide us with your contacts and the details of the needed in-house proposal, and we will contact you as soon as possible

Full name *
Email *
Private phone number *
work phone number *
Country & City *
Company / Employer *

Your Inquiry



Course details

Overview ?

Introduction

Engineering and maintenance projects call for complex engineering and business tradeoffs with due regard to compliance with regulatory and code requirements. A sound understanding of the key aspects of project objectives, drivers, constraints, and profitability is crucial for the success of a project. Fast-track schedules demand faster, more accurate technical and economic decisions earlier in the design process, when engineers and business managers least understands project costs. Consequently, many process facilities cost more than they should.

Using the appropriate evaluation techniques and skills, engineering and economic decisions can be reached faster, more accurately, and with greater confidence, avoiding costly project delays and potential rework.

In cases where there is competition for resources between several technically viable projects, cost and schedule factors play a key role in ranking the projects based on their profitability. Similarly, costs and schedules have a major impact on the selection of the most cost effective maintenance option from among several alternatives such as repair/replace or long/short term repairs.

The course covers the basics of project development and management. It begins with Project initiation and development phases and progresses through the project execution and control phase. It highlights the cost considerations and the degree of influence on costs in each phase.

Technical viability of a project, whether it involves new facilities or a repair method, must be ensured before the economic evaluation starts. The course presents the technical fundamentals and provides guidelines and procedures for conducting technical evaluations.

The time value of money and life cycle cost concepts are essential aspects of economic evaluations. These topics will be covered in detail with the use of a number of worked examples.

The course will comprise lectures and workshops that incorporate a number of short exercises to reinforce the key techniques discussed to maximize your benefits. Additionally, an optional “Question and Answer” period will provide you with opportunities to get expert answers on your specific questions.

Objectives
To provide you with:
  • A fundamental understanding of financial and accounting principles, terms, techniques, and best practices,
  • The tools you need to perform financial evaluations and justify your own project to corporate management, and
  • A fundamental understanding of the technical aspects that should be considered in technical evaluations of projects to ensure their technical viability, mechanical integrity and compliance with applicable regulations, codes, and standards.
Training Methodology
  • The course combines presentations and discussions of topics covered with relevant examples.
  • It combines sound engineering and economic principles, methods, and best industry practices and enforces the learning’s with Case Studies and Question & Answer workshops to maximize the benefits to the participants. Participants will work in groups to perform practical technical and economic evaluations.
  • Participants will be provided with comprehensive course notes and copies of presentation material that will be very valuable for detailed study and future reference.
Organizational Impact
  • The company will be able to implement fit-for-purpose projects solutions that are both technically sound and cost-effective.
  • Technical and financial resources can be allocated to projects based on their ranking and cost effectiveness.
  • Heightened business focus among staff will result in operational and financial performance improvement
Personal Impact
  • Participants will enhance their understanding of the time value of money and life cycle cost principles.
  • Participants will learn how to perform key project analyses including technical, economic, and environmental evaluations.
  • Participants will add to their ability to evaluate the economic and technical impacts of alternative maintenance strategies and methods on maintenance projects and to select the optimum alternative for the specific application while complying with regulatory requirements.
  • Participants will gain a working knowledge of the various cost estimating methods and how to prepare timely cost estimates that are fit for purpose.
  • Participants will broaden their technical knowledge base and understand the economic impact of their technical decisions leading to increased contributions in project profitability, technical integrity and reduced downtime.
  • Participants will enhance their competence and productivity thereby improving their performance level and making additional value added contributions to their organizations.
Who Should Attend?

The course is pitched to appeal to professionals with a large range of technical and industrial backgrounds and varying levels of experience seeking to broaden their skills and abilities in economic and technical valuation techniques required across industry.

Design, project, maintenance, and plant engineers, supervisors and professionals in the manufacturing, chemical processing, petrochemical, power, food, and other process industries. New graduates will benefit within the short period of two days from the extensive practical experience of the instructor.

Seminar outline
Project Initiation and Development
  • Overview 
    • Definitions of terms used in project development, analysis, and management
    • Project types and sizes –
      • Capital projects – Evergreen, expansions/additions, revamps
      • Maintenance projects – Shutdowns; repairs; alterations; replacements and improvements
    • Project definition, scope and drivers
      • Project mission and drivers
      • Phase 1: Concept generation – potential ways of achieving project mission
      • Phase 2: Project definition - one option is selected and developed
      • Phase 3: Project implementation – continues through construction to the hand-over of the completed project
    • Project Management Process
      • Project Planning
      • Project Scheduling
      • Feasibility study - Is the project feasible? How feasible are the alternatives under consideration; feasibility report
      • Cost, timing, performance, effect of organization
    • Key issues in project analysis
  • Models of Project Development 
    • Project evolution and life cycle
    • Basic seven phases of a project
    • Common three main phases of a project
      • Front End Loading -FEL (or Front End Definition - FEED) which includes development of the entire detailed plan and project approvals
      • Execution Phase - Detailed engineering; procurement, construction
      • Commissioning, Handover and Start-up phase
    • Project definition
      • Design Basis Document (DBD) – Development guidelines
      • Implementation strategy – owner involvement
      • Procurement policies, procedures and practices
      • Spare parts policies, procedures and practices
      • Detailed (definitive) cost estimate
    • Project development
      • Project Development Plan (PDP) – Preparation Guidelines
      • Conceptual design alternatives
      • Preliminary cost estimates for alternatives
      • Responsibility charting for stakeholders
      • Selection guidelines for final design alternative
      • Preliminary feasibility analysis – technical and economic feasibility
      • Preliminary schedule
    • Project execution and control
      • Project Execution Plan (PEP) – How to develop an effective execution plan
      • Coordination and Control Procedures
      • Detailed Schedule
      • Detailed Engineering
      • Safety Process Hazard Analysis
      • Construction - Logistics, work Permits, Safety
      • Quality Control / Quality Assurance
      • Project Change management System
      • Progress Monitoring and reporting
      • Project Management Tools
    • Workshop 1 - Key principles and guidelines for successful projects
      • Best practices for project success
      • Common causes of project failures
      • Case study – Anatomy of a project
      • Capturing key learnings
Technical Evaluation Analysis
  • Project Risk and Contingency Analysis 
    • Key issues in project analysis
      • Market analysis – Supply and demand
      • Technical analysis – Technical viability; sensible choices
      • Financial analysis – financial viability; return on investment; risk
      • Economic analysis – social cost-benefit
      • Environmental analysis – likely ecological damage; restoration measures/costs
      • Risk analysis – Levels of risk associated with the project
    • Analysis of project technical and engineering aspects
      • Purpose of technical analysis
      • Technical viability
        • Design basis
        • Existing and proven technologies
        • New and developmental technologies
        • Regulatory approvals – lead time, resources
        • Risk considerations – obsolescence, continuous technical support,
      • Sensible choices
        • Location
        • Process, equipment, methods, procedures
        • Size - optimal scale of operation
        • Constructability, operability and maintainability
        • Availability of human resources, power, and other inputs
        • Realistic work schedule
    • Applicable regulations, codes, standards - design and construction, HSE
    • Mechanical integrity, management of change
  • Environmental Analysis 
    • Consideration on environmental aspects
      • What is the likely damage caused by the project to the environment?
      • What is the cost of restoration measures required to ensure that the damage in the environment is contained within acceptable limits?
    • Applicable regulations and specifications
    • Due diligence

 

  • Project Risk Considerations 
    • Types of Risks Associated with Projects
      • Market risk
      • Human resource
      • Financial resources
      • Technology risk
      • Management risk
      • Timing
      • Intellectual property right issues
      • Regulation risks
    • Risk assessment methods and recommended practices
    • Risk Management and Contingency
      • Level of uncertainty in project life cycle
      • Risk analysis and mitigation measures
      • Contingency

 

  • Workshop 2 – Technical Evaluation of Projects 
    • Case study – Technical evaluation of a capital project
Economic Evaluation Analysis
  • Objectives of Economic Evaluation Analysis 
    • Definitions and overview
    • Typical categories of engineering economic decisions
      • New Product and Product Expansion
      • Equipment and Process Selection
      • Equipment Replacement
      • Cost Reduction
      • Service Improvement
  • Economic (Financial) Evaluation 
    • Introduction
    • Basic concepts of economic evaluation
    • Economic evaluation methods – static and dynamic
      • Simple payback
      • Benefit-cost ratio (BCR)
      • Net Present Value (NPV)
      • Internal rate of return (IRR)
    • Capital equivalent of energy and maintenance savings
  • Principles of Time Value of Money and the Discount Rate 
    • Discounted cash flow (DCF) calculation - Definitions and premises
    • Project Cash Flow Components
    • Discounting and time-value considerations
    • Distinguishing cash flow and other measures of profitability
    • Cost of capital and inflation issues
    • Capital budgeting techniques and best practices
    • Methods of computing time-value of money
      • The algebraic (or formula) method
      • The financial table method
      • The financial calculator method
  • Methods of Ranking Investment Proposals 
    • Non-Discounted Cash Flow Methods
      • Payback method (or Payback Period)
      • Accounting rate of return (ARR)
    • Discounted Cash Flow Methods
      • Net Present Value Method (NPV)
      • Internal rate of return (IRR)
    • Profitability index (PI)
  • Workshop 3 – Economic Evaluation of Projects 
    • Case study – Economic evaluation of a capital project
Business Focused Facilities
  • Business-Focused Facilities (BFF) 
    • Economic interpretation of engineering work
    • Fundamental BFF principles
      • Total cost (full cycle) perspective
      • Common and clear goals
      • Adaptive process and change management
      • Teamwork
      • Continuous improvement
  • Life-Cycle (Total) Cost Analysis 
    • Basics of life cycle cost (LCC) analysis
    • LCC Models - SAE model
    • Life-cycle management (value management)
      • Renewal/replacement intervals,
      • Servicing costs,
      • Failure consequences,
      • Asset redundancy,
      • Maintenance strategies,
      • Energy efficiency,
      • Design life service factor
  • Effective Life-Cycle Management Tools 
    • Engineering economics
    • Remaining life estimates
    • Statistical analysis,
    • Opportunity costing
    • LCC Calculation Procedures
  • Project Cost Estimating 
    • Types of estimates, accuracy
    • Estimating methods
    • Cost indices and economic indicators
    • Direct and indirect costs
    • Computer based estimating
  • Equipment Sizing and Costs 
    • Power Sizing Model
    • Rough estimates
    • Semi-detailed estimates
    • Detailed estimates
  • Workshop 4 – Cost Estimating 
    • Case studies – Project cost estimates using different methods
Evaluation of Maintenance Projects
  • Types of Maintenance Projects  
    • Complete turnarounds – extent, frequency
    • Opportunistic minor turnarounds
    • Specialized repair methods
    • Replacement in kind and improvement opportunities
    • Specialized Inspection projects – Application and frequency
  • Concept of Component Life 
    • Introduction
    • Physical life
    • Economic life
    • Technical life – technical obsolescence
  • Technical Evaluation of Maintenance Projects 
    • Key project characteristics and special requirements
      • Significance of schedule and maintainability – optimum cost or least downtime
      • Availability of human resources
      • Constructability considerations
    • Fitness-for-service assessments (FFS
      • Basics of FFS
      • Run/repair/replace decisions
    • Alternative repair strategies and methods
      • Temporary repairs
      • Permanent repairs
      • Alternate repair technologies and procedures
    • Management of change
      • Basics of management of change
      • Impact of maintenance projects on mechanical integrity and reliability
      • Regulatory, codes and standards requirements
  • Workshop 5 – Evaluation of Maintenance Projects
 

Day 1

Asset Cost Management Introduction

Definitions of reliability, maintenance & asset management
The total cost of maintenance
Best practice reliability and maintenance processes
Elements of asset management best practice
Auditing performance
Overview of TPM, RCM, BCM, QCM, and other asset management buzzword
Open discussion sessions

Day 2

Laying the Groundwork

Definitions of reliability, maintenance & asset management
The total cost of maintenance
Best practice reliability and maintenance processes
Elements of asset management best practice
Auditing performance
Overview of TPM, RCM, BCM, QCM, and other asset management buzzword
Open discussion sessions

Day 3

Applying the Value based Process

Definitions of reliability, maintenance & asset management
The total cost of maintenance
Best practice reliability and maintenance processes
Elements of asset management best practice
Auditing performance
Overview of TPM, RCM, BCM, QCM, and other asset management buzzword
Open discussion sessions

Day 4

Ensuring the Continuity of the Value-based Process

Definitions of reliability, maintenance & asset management
The total cost of maintenance
Best practice reliability and maintenance processes
Elements of asset management best practice
Auditing performance
Overview of TPM, RCM, BCM, QCM, and other asset management buzzword
Open discussion sessions

Day 5

Supporting Process that Lower Life-cycle costs

Definitions of reliability, maintenance & asset management
The total cost of maintenance
Best practice reliability and maintenance processes
Elements of asset management best practice
Auditing performance
Overview of TPM, RCM, BCM, QCM, and other asset management buzzword
Open discussion sessions

Training Methodology

Pathways Training and consulting adopts the newest techniques of human resources Training and consulting and, with the following:

  • Theoretical lectures are delivered via PowerPoint and visual displays (videos and short films)
  • Making scientific evaluation to the trainee (before and after)
  • Brainstorming and role-playing
  • Using case studies related to the scientific material being delivered and the trainees' work.
  • The participants get the scientific and practical material printed and on CDs and Flash memories.
  • Preparing records and reports of the participants' attendance and results, with a general evaluation of the training program.
  • A group of the best trainers and experts in all fields and specialties professionally prepares the scientific material.
  • After finishing the course, the participants get certificates of attendance signed, certified, and issued by pathways Training and consulting.
  • Our training programs start at 9:00 o'clock in the morning and end at 2:00 in the afternoon, with snack buffet during the lectures.
  • Providing a lunch buffet during the training program period, with organizing a lunch party on the training program final day for taking some photos and certificate awarding.
Different venues & timings for this course

Course name

Duration

City

Price

Economic & Technical Evaluations in Engineering & Maintenance

17, Feb 2025 21, Feb 2025

Zurich

5250$

Economic & Technical Evaluations in Engineering & Maintenance

24, Feb 2025 28, Feb 2025

Trabzon

4000$

Economic & Technical Evaluations in Engineering & Maintenance

03, Mar 2025 07, Mar 2025

Beijing

5450$

Economic & Technical Evaluations in Engineering & Maintenance

10, Mar 2025 14, Mar 2025

Amsterdam

5250$

Economic & Technical Evaluations in Engineering & Maintenance

17, Mar 2025 21, Mar 2025

Bangkok

5450$

Economic & Technical Evaluations in Engineering & Maintenance

23, Mar 2025 27, Mar 2025

Muscat

3250$

Economic & Technical Evaluations in Engineering & Maintenance

31, Mar 2025 04, Apr 2025

Toronto

6000$

Economic & Technical Evaluations in Engineering & Maintenance

07, Apr 2025 11, Apr 2025

Barcelona

5250$

Economic & Technical Evaluations in Engineering & Maintenance

14, Apr 2025 18, Apr 2025

London

5250$

Economic & Technical Evaluations in Engineering & Maintenance

20, Apr 2025 24, Apr 2025

Cairo

2950$

Economic & Technical Evaluations in Engineering & Maintenance

28, Apr 2025 02, May 2025

Geneva

5250$

Economic & Technical Evaluations in Engineering & Maintenance

05, May 2025 09, May 2025

Vienna

5250$

Economic & Technical Evaluations in Engineering & Maintenance

12, May 2025 16, May 2025

Munich

5250$

Economic & Technical Evaluations in Engineering & Maintenance

19, May 2025 23, May 2025

Prague

5250$

Economic & Technical Evaluations in Engineering & Maintenance

26, May 2025 30, May 2025

Rome

5250$

Economic & Technical Evaluations in Engineering & Maintenance

02, Jun 2025 06, Jun 2025

Jakarta

4000$

Economic & Technical Evaluations in Engineering & Maintenance

08, Jun 2025 12, Jun 2025

Tunisia

3750$

Economic & Technical Evaluations in Engineering & Maintenance

09, Jun 2025 13, Jun 2025

Milan

5250$

Economic & Technical Evaluations in Engineering & Maintenance

16, Jun 2025 20, Jun 2025

Marbella

5250$

Economic & Technical Evaluations in Engineering & Maintenance

23, Jun 2025 27, Jun 2025

Paris

5250$

Economic & Technical Evaluations in Engineering & Maintenance

30, Jun 2025 04, Jul 2025

Madrid

5250$

Economic & Technical Evaluations in Engineering & Maintenance

06, Jul 2025 10, Jul 2025

DUBAI

3450$

Economic & Technical Evaluations in Engineering & Maintenance

14, Jul 2025 18, Jul 2025

Kuala Lumpur

3750$

Economic & Technical Evaluations in Engineering & Maintenance

20, Jul 2025 24, Jul 2025

Amman

3250$

Economic & Technical Evaluations in Engineering & Maintenance

27, Jul 2025 31, Jul 2025

Marrakesh

3450$

Economic & Technical Evaluations in Engineering & Maintenance

03, Aug 2025 07, Aug 2025

Sharm ElShaikh

3250$

Economic & Technical Evaluations in Engineering & Maintenance

10, Aug 2025 14, Aug 2025

Doha

4000$

Economic & Technical Evaluations in Engineering & Maintenance

17, Aug 2025 21, Aug 2025

Casablanca

3450$

Economic & Technical Evaluations in Engineering & Maintenance

24, Aug 2025 28, Aug 2025

Riyadh

3250$

Economic & Technical Evaluations in Engineering & Maintenance

01, Sep 2025 05, Sep 2025

Istanbul

3450$

Economic & Technical Evaluations in Engineering & Maintenance

07, Sep 2025 11, Sep 2025

Jeddah

3250$

Economic & Technical Evaluations in Engineering & Maintenance

08, Sep 2025 12, Sep 2025

Milan

5250$

Economic & Technical Evaluations in Engineering & Maintenance

14, Sep 2025 18, Sep 2025

Manama

3250$

Economic & Technical Evaluations in Engineering & Maintenance

21, Sep 2025 25, Sep 2025

Beirut

3250$

Economic & Technical Evaluations in Engineering & Maintenance

29, Sep 2025 03, Oct 2025

Singapore

5450$

Economic & Technical Evaluations in Engineering & Maintenance

05, Oct 2025 09, Oct 2025

Kuwait

3250$

Economic & Technical Evaluations in Engineering & Maintenance

12, Oct 2025 16, Oct 2025

DUBAI

3450$

Economic & Technical Evaluations in Engineering & Maintenance

20, Oct 2025 24, Oct 2025

Kuala Lumpur

3750$

Economic & Technical Evaluations in Engineering & Maintenance

26, Oct 2025 30, Oct 2025

Amman

3250$

Economic & Technical Evaluations in Engineering & Maintenance

02, Nov 2025 06, Nov 2025

Marrakesh

3450$

Economic & Technical Evaluations in Engineering & Maintenance

09, Nov 2025 13, Nov 2025

Sharm ElShaikh

3250$

Economic & Technical Evaluations in Engineering & Maintenance

16, Nov 2025 20, Nov 2025

Doha

4000$

Economic & Technical Evaluations in Engineering & Maintenance

23, Nov 2025 27, Nov 2025

Casablanca

3450$

Economic & Technical Evaluations in Engineering & Maintenance

30, Nov 2025 04, Dec 2025

Riyadh

3250$

Economic & Technical Evaluations in Engineering & Maintenance

08, Dec 2025 12, Dec 2025

Istanbul

3450$

Economic & Technical Evaluations in Engineering & Maintenance

14, Dec 2025 18, Dec 2025

Jeddah

3250$

Economic & Technical Evaluations in Engineering & Maintenance

21, Dec 2025 25, Dec 2025

Manama

3250$

Economic & Technical Evaluations in Engineering & Maintenance

28, Dec 2025 01, Jan 2026

Jeddah

3250$

Have a look too on these courses